il sistema solare in immagini – parte IX – urano ed i suoi satelliti

continuiamo il viaggio nel sistema solare con Urano e purtroppo, come per il seguente Nettuno, le uniche immagini di cui si dispone sono quelle della gloriosa Voyager 2, la cui camera non consentiva molto altro

Urano

Urano è il settimo pianeta del sistema solare in ordine di distanza dal Sole, il terzo per diametro e il quarto per massa e, sebbene sia visibile anche ad occhio nudo, come gli altri cinque pianeti noti fin dall’antichità, non fu mai riconosciuto come tale a causa della bassa luminosità e dell’orbita molto lenta. La sua scoperta avvenne nel 1781 da William Herschel (il primo pianeta scoperto al telescopio) ed essa giunse del tutto inaspettata, poichè i pianeti visibili ad occhio nudo erano conosciuti da millenni e nessuno sospettava l’esistenza di altri pianeti. Da quel momento nessuno fu più sicuro del reale numero di pianeti del nostro sistema solare.

Uranus2.jpg

immagine di Urano scattata dalla sonda Voyager 2 nel 1986

La composizione chimica di Urano (simile a quella di Nettuno) è differente rispetto ai giganti gassosi Giove e Saturno. Per questa ragione gli astronomi talvolta preferiscono riferirsi a questi due pianeti trattandoli come una classe separata, i “giganti ghiacciati”. L’atmosfera del pianeta, sebbene sia simile a quella di Giove e Saturno per la presenza abbondante di idrogeno ed elio, contiene una proporzione elevata di “ghiacci”, come l’acqua, l’ammoniaca e il metano, assieme a tracce di altri idrocarburi. Quella di Urano è anche l’atmosfera più fredda del sistema solare, con una temperatura minima che può scendere fino a 49 K (−224 °C), con una complessa struttura di nubi ben stratificata, in cui si pensa che l’acqua si trovi negli strati inferiori e il metano in quelli più superiori. L’interno del pianeta al contrario sarebbe composto principalmente di ghiacci e rocce.

Una delle caratteristiche più insolite del pianeta è l’orientamento del suo asse di rotazione. Gli altri pianeti hanno l’asse quasi perpendicolare al piano dell’orbita, mentre quello di Urano è quasi parallelo. Ruota quindi esponendo al Sole uno dei suoi poli per metà del periodo di rivoluzione con conseguente estremizzazione delle fasi stagionali. Inoltre, poiché l’asse è inclinato di poco più di 90°, la rotazione è tecnicamente retrograda, ovvero Urano ruota nel verso opposto rispetto a quello di tutti gli altri pianeti del sistema solare (eccetto Venere). Il periodo di rivoluzione attorno al Sole è circa 84 anni terrestri con un’orbita che si discosta poco dell’eclittica (inclinazione di 0,7°).

Uranus is seen in this false-color view from NASA's Hubble Space Telescope

immagine in falsi colori del telescopio Hubble che mostra le strutture ad anelli del pianeta

Come gli altri pianeti giganti, Urano possiede un sistema di anelli planetari, una magnetosfera e numerosi satelliti; visti dalla Terra, a causa dell’inclinazione del pianeta, i suoi anelli possono apparire come un sistema concentrico che circonda il pianeta, oppure, come nel 2007 e 2008, apparire di taglio. Nel 1986 la sonda Voyager 2 mostrò Urano come un pianeta senza alcun segno distintivo sulla sua superficie, senza le bande e tempeste tipiche degli altri giganti gassosi. Tuttavia, osservazioni successive condotte dalla Terra, hanno mostrato delle evidenze di cambiamenti legati alle stagioni e un aumento dell’attività climatica, quando il pianeta si è avvicinato all’equinozio. La velocità dei venti su Urano può raggiungere i 250 m/s, pari a 900 km/h.

Osservazione

Il pianeta manifesta fluttuazioni nella luminosità, ben documentate, determinate sia da cambiamenti fisici dell’atmosfera del pianeta, sia da considerazioni geometriche e prospettiche. La luminosità di Urano è influenzata dalla sua distanza dal Sole, dalla distanza dalla Terra e dalla particolare vista che offre al nostro pianeta: Urano appare leggermente più grande e luminoso quando mostra le regioni polari alla Terra. Inoltre è stata individuata una correlazione tra l’attività solare e la luminosità del pianeta: durante i periodi di intensa attività solare, le fluttuazioni nella luminosità del pianeta sono più pronunciate.

double image of blue planet

immagini composte da osservazioni del telescopio Hubble e dalla sonda Voyager 2 –  anelli ed aurore

Tra il 1995 ed il 2006 la magnitudine apparente di Urano è variata fluttuando tra +5,5 e +6,0, ponendolo giusto al di sopra del limite per la visibilità ad occhio nudo, intorno +6,5. All’opposizione, è visibile come una debole stella quando il cielo è scuro e può essere osservato anche in ambiente urbano usando un binocolo. Dalla terra ha un diametro compreso tra 3,4 e i 3,7 secondi d’arco. Con un telescopio a 100 ingrandimenti si riesce ad intravedere la forma di un disco, fino ad arrivare a 500× dove raggiunge le dimensioni angolari della Luna. Anche usando grossi telescopi non può essere visto nessun dettaglio del suo disco. Ad ogni modo osservazioni all’infrarosso della sua atmosfera mediante l’utilizzo di ottiche adattive e del Telescopio spaziale Hubble hanno riportato dati interessanti nei vari anni dopo il passaggio della sonda Voyager 2.

Immagine ripresa dal Telescopio spaziale Hubble – il satellite Ariel passa sul disco del pianeta

L’osservazione dei satelliti del pianeta è difficoltosa. Oberon e Titania possono essere individuati con un telescopio da 8”, in un cielo particolarmente buio. Aperture di 12-14 ” e 16 ” dovrebbero permettere l’individuazione di Ariel ed Umbriel rispettivamente. Miranda può essere osservata solo con grandi telescopi.

immagine in due bande dell’infrarosso scattate dal telescopio Keck

Missioni spaziali

L’esplorazione di Urano si deve alla sola sonda Voyager 2 ed in parte alla sonda New Horizons diretta verso Plutone, ma ad oggi non sono programmate altre missioni esplorative. Per ovviare alla mancanza di informazioni dirette, le variazioni nell’atmosfera del pianeta sono studiate attraverso campagne di osservazione telescopica, in particolare utilizzando la Camera planetaria a grande campo a bordo del Telescopio spaziale Hubble.

Risultato immagine per urano nasa

una immagine di Urano scattata dalla Voyager 2

L’esplorazione di Urano, come anche quella di Nettuno, è resa difficoltosa dalle grandi distanze che separano il pianeta dalla Terra e dal Sole. Ogni missione deve essere dotata di un sistema di alimentazione in grado di fornire energia alla sonda senza la possibilità di conversione dell’energia solare attraverso l’uso di pannelli fotovoltaici. Attualmente, l’unica fonte praticabile di energia è un generatore termoelettrico a radioisotopi.

 
 
L’ ultima immagine di Urano ripresa dalla Voyager 2 quando ha oltrepassato il pianeta per proseguire verso Nettuno.

Lo studio di Urano, infine, non è ritenuto prioritario dalle principali agenzie spaziali, che stanno invece concentrando le risorse nell’esplorazione dei sistemi di Giove e di Saturno e valutando l’opportunità di inviare una missione verso Nettuno.

Il sorvolo della Voyager 2

La sonda Voyager 2 toccò il massimo avvicinamento al pianeta il 24 gennaio 1986, ad una distanza di circa 81.500 km. Le osservazioni durarono solo sei ore, ma hanno ovviamente permesso di imparare su Urano molto più di 200 anni di osservazioni dalla Terra.

Uranus Rings and Two Moons

immagine scattata dalla Voyager 2 – gli anelli di Urano e due piccole lune

Le prime analisi condotte sui dati furono tuttavia un’enorme delusione: non veniva riscontrata la presenza di fasce parallele né di nubi, al contrario di quanto era stato osservato dalla Terra. L’atmosfera di un colore azzurro-verde era uniforme e priva completamente di dettagli. Fu solo grazie ad un trattamento delle immagini che apparvero sia le nubi che le altre formazioni. La sonda scoprì nuove lune, inviò a Terra le prime immagini degli anelli e scoprì inoltre attività geologica sulle lune maggiori: depositi scuri in fondo a crateri ghiacciati indicavano la presenza di acqua sporca dovuta ad attività vulcanica.

due immagini di Urano scattate dalla Voyager, la prima in colori reali, la seconda in falsi colori per contrastare le strutture atmosferiche del pianeta

Parametri orbitali e rotazione

Urano ruota attorno al Sole in 84 anni terrestri. La sua distanza media dal Sole è di circa 3.000 milioni di chilometri (circa 20 UA). L’intensità della luce solare su Urano è quindi circa 1/400 che sulla Terra. Gli elementi orbitali furono calcolati per la prima volta nel 1783 da Pierre-Simon Laplace. Le discrepanze tra l’orbita predetta e quella osservata portarono alla proposta di John Couch Adams, nel 1841, che la causa sarebbe potuta essere la forza gravitazionale dovuta alla presenza di un altro pianeta al di là di Urano. Nel 1845, Urbain Le Verrier iniziò la propria ricerca di un altro pianeta nelle vicinanza dell’orbita di Urano. Il 23 settembre 1846, Johann Galle trova un nuovo pianeta, più tardi chiamato Nettuno, nella posizione prevista da Le Verrier.

Il periodo di rotazione dell’interno di Urano è di 17 ore e 14 minuti, in senso retrogrado. Come in tutti i pianeti giganti gassosi, la sua atmosfera superiore è soggetta a forti venti in direzione di rotazione. Ad alcune latitudini, come a circa 60 gradi sud, l’atmosfera visibile ruota molto più velocemente, completando una rotazione in meno di 14 ore.

Inclinazione assiale

La particolarità di Urano sta nell’inclinazione del suo asse che si trova inclinato di 97,77° sul piano dell’orbita, pertanto l’asse di rotazione di Urano giace quasi sul suo piano orbitale. Di conseguenza uno dei due poli è diretto verso il Sole per metà dell’orbita, e per la successiva metà dell’orbita cade nella zona in ombra. Nel tratto intermedio all’inversione dei due poli rispetto al Sole, questo sorge e tramonta intorno all’equatore normalmente.

Inclinazione assiale dei giganti gassosi -si noti l’estrema inclinazione sul piano di Urano 

Il polo sud di Urano era diretto verso il Sole al momento del fly-by della Voyager 2 nel 1986, risultando completamente illuminato. Quel polo è definito come “sud” in base alle convenzioni dell’Unione Astronomica Internazionale che definisce il polo nord di un pianeta o satellite il polo che punta “sopra” il piano del Sistema Solare, indipendentemente dalla direzione della rotazione del pianeta. Un risultato di questo strano orientamento è che le regioni polari di Urano ricevono una grande quantità di energia dal Sole in maniera maggiore rispetto alle regioni prossime all’equatore. Tuttavia Urano è più caldo all’equatore che ai poli, anche se il motivo non è attualmente conosciuto.

Sembra anche che l’estrema inclinazione dell’asse di rotazione di Urano causi delle variazioni estreme nelle stagioni per quanto riguarda la meteorologia del pianeta. Durante il viaggio del Voyager 2 le nubi di Urano erano estremamente deboli e miti, mentre osservazioni più recenti (2005) fatte tramite il telescopio spaziale Hubble hanno rilevato una presenza molto più accentuata e turbolenta di allora, quando l’inclinazione dell’asse stava portando l’equatore nella direzione perpendicolare al Sole (questo allineamento si è avuto nel 2007).

La ragione dell’insolita inclinazione assiale di Urano non è nota con certezza: si è pensato in passato che durante la formazione del sistema solare un protopianeta con massa due volte quella terrestre sia entrato in collisione col pianeta facendone “ruotare” l’asse. Tuttavia questa ipotesi non spiegherebbe perché le lune principali di Urano abbiano anch’esse l’asse di rotazione di 98° come il pianeta e non abbiano invece conservato le orbite originarie. Nel 2011 è stato pubblicato uno studio basato su simulazioni al computer riguardo a diversi scenari d’impatto avuti da Urano durante la formazione del sistema solare, studio che afferma che le collisioni subite da Urano durante la formazione del sistema solare dovrebbero essere state ripetute, due o forse più, perché nel caso di un solo impatto, le lune avrebbero assunto molto probabilmente una rotazione retrograda, al contrario di quanto effettivamente osservato nell’era attuale.

Caratteristiche chimico-fisiche

Composizione

Il modello standard della struttura di Urano prevede la divisione in tre strati: lo strato roccioso (silicati, ferro, nichel) al centro, un mantello ghiacciato nel mezzo e uno strato gassoso composto da idrogeno ed elio all’esterno. Il nucleo è relativamente piccolo, con una massa di appena 0,55 masse terrestri e un raggio inferiore al 20% del raggio totale, mentre il mantello ha una massa 13,4 volte quella terrestre. L’atmosfera esterna è relativamente inconsistente, appena 0,5 masse terrestri e costituisce il 20% del raggio di Urano. La densità del nucleo di Urano è di circa 9 g/cm³, con una pressione al centro di 8 milioni di bar e una temperatura di circa 5000 K. Il mantello non è costituito da ghiaccio nel senso convenzionale del termine, bensì da un fluido contenente acqua, ammoniaca e altre sostanze volatili. Le composizioni di Urano e Nettuno sono piuttosto diverse da quelle di Giove e Saturno, con una prevalenza dei materiali ghiacciati rispetto ai gas.

modello della composizione interna del pianeta

Anche se il modello citato sopra è quello considerato standard, esistono altri modelli possibili, tuttavia i dati attualmente disponibili non consentono agli scienziati di determinare quale sia il modello corretto.

Massa e dimensioni

La massa di Urano è circa 14,5 volte quella della Terra, il che lo rende il meno massiccio dei pianeti giganti, nonostante il suo diametro, circa quattro volte quella della Terra, sia leggermente più grande di quello di Nettuno. Con una densità di 1,27 g/cm³ Urano è il secondo pianeta meno denso del sistema solare, dopo Saturno. La sua densità indica che Urano è composto principalmente di acqua, ammoniaca e metano congelati. La massa totale di ghiaccio interno di Urano non è nota con precisione, perché emergono alcune differenze a seconda del modello scelto; essa dovrebbe essere compresa tra 9,3 e 13,5 masse terrestri. L’idrogeno e l’elio costituiscono solo una piccola parte della massa totale, rispettivamente 0,5 e 1,5 masse terrestri. Il resto della massa non ghiacciata (da 0,5 a 3,7 masse terrestri) è costituita da materiale roccioso.

Struttura interna

La struttura interna di Urano non presenta una crosta solida ed il gas atmosferico diventa sempre più denso procedendo verso l’interno e gradualmente covertendosi in liquido. Per convenzione, viene designata come superficie di uno sferoide oblato il punto dove la pressione atmosferica è pari a 1 bar; quindi Urano ha un raggio equatoriale e un raggio polare pari rispettivamente a 25 559 ± 4 e 24 973 ± 20 km.

modello di composizione dell’atmosfera e dell’interno del pianeta

Urano (come Nettuno) è solo in parte simile alla parte interna di Giove e Saturno, non essendo presente l’idrogeno metallico liquido che i due pianeti giganti posseggono, grazie alle pressioni enormi che esercitano sulle loro parti interne. Urano, di massa più piccola, non può generare una pressione sufficiente. Il nucleo roccioso è relativamente piccolo e poco massiccio, inoltre si differenzia da Nettuno e dagli altri pianeti giganti per la mancanza di calore interno: in termini astronomici esso ha un basso flusso termico. Non è chiaro esattamente il motivo per cui Urano non irradia verso l’esterno energia, come fa ad esempio il “gemello” Nettuno, che irradia 2,61 volte più energia nello spazio di quanto ne riceve dal Sole. Il calore irradiato da Urano nella banda del lontano infrarosso dello spettro è solo 1,06 ± 0,08 volte l’energia solare assorbita nella sua atmosfera. Infatti, il flusso di calore di Urano è solo 0,042 ± 0,047 W/m², che è inferiore al flusso di calore interno della Terra di circa 0,075 W/m². La temperatura più bassa registrata nella tropopausa di Urano è di 49 K (-224 °C), rendendo Urano il pianeta più freddo del Sistema Solare.

Una delle ipotesi per questa differenza rispetto altri giganti gassosi è che quando Urano fu colpito nell’impatto col corpo che ha causato la sua peculiare inclinazione assiale, venne espulsa la maggior parte del calore interno originario, riducendo sensibilmente la temperatura del nucleo. Un’altra ipotesi è che ci sia un qualche tipo di barriera negli strati superiori che impedisce al calore del nucleo di raggiungere la superficie, come una convezione tra strati di diversa composizione, che inibisce il trasporto di calore verso l’esterno.

Atmosfera

L’atmosfera è composta da idrogeno (83%), elio (15%), metano (2%) e con tracce di acqua ed ammoniaca. Le capacità degli strumenti di rilevazione permettono di raggiungere una profondità di circa 300 km al di sotto dello strato alla pressione di 1 bar assunto come zero altimetrico, a cui corrispondono una pressione di 100 bar ed una temperatura di 320 K. L’atmosfera può essere divisa in tre strati: la troposfera, ad un’altitudine compresa tra i -300 sotto al livello dove la pressione è pari a un bar e 50 km, con pressioni che variano da 100 a 0,1 bar (10 MPa a 10 kPa), la stratosfera, ad altitudini tra i 50 e 4000 km e pressioni tra 0,1 e 10−10 bar (10 kPa a 10 Pa), e la termosfera/corona, che si estende da 4000 km a 50.000 km sulla superficie. Il colore ciano del pianeta è dovuto alla presenza di metano nell’atmosfera, che assorbe la luce rossa e riflette quella blu. La temperatura della superficie delle nuvole che ricoprono Urano è di circa 55 K (−218 °C). Urano è talmente distante dal Sole che l’escursione termica tra l’estate e l’inverno è quasi nulla.

A New Look at Uranus

una immagine agli infrarossi del telescopio giapponese Subaru di Urano e le lune Miranda (in alto) e Ariel (in basso), che mostra il metano con il colore blu.

Troposfera

La troposfera è la regione inferiore e più densa dell’atmosfera ed è caratterizzata dalla diminuzione della temperatura con l’altezza. La temperatura varia da circa 320 K alla base della troposfera, a −300 km, a 53 K a 50 km. La sonda Voyager 2 durante il fly-by al pianeta rilevò la presenza di nubi di metano attraverso misurazioni radio durante un’occultazione, tuttavia gli altri strati nuvolosi di Urano non sono ben noti. È stato ipotizzato che nuvole d’acqua giacciano entro i 50-100 bar di pressione, nuvole di idrosolfuro di ammonio (NH4HS) entro i 20-40 bar, nuvole di ammoniaca o acido solfidrico entro i 3-10 bar ed infine nuvole di metano entro 1-2 bar. La troposfera è una regione molto dinamica dell’atmosfera, manifestando forti venti, moti convettivi, nubi altamente brillanti e cambiamenti stagionali.

Profilo della temperatura della troposfera di Urano e della sua bassa stratosfera. Sono riportati anche gli strati nuvolosi e di foschia.

Atmosfera superiore

Lo strato intermedio dell’atmosfera di Urano è la stratosfera, dove le temperature generalmente variano con l’altezza a partire da 53 K, in corrispondenza della tropopausa, fino a valori compresi tra gli 800 e gli 850 K alla base della termosfera. Il riscaldamento che si verifica nella stratosfera è dovuto all’assorbimento di radiazione solare, nell’ultravioletto e nell’infrarosso, da parte del metano e di altri idrocarburi, che si formano in questa regione dell’atmosfera in conseguenza della fotolisi del metano. Gli idrocarburi più abbondanti sono l’acetilene e l’etano. Il metano ed il monossido di carbonio alle stesse altitudini presentano valori simili, mentre idrocarburi più pesanti e l’anidride carbonica sono presenti con abbondanze tre ordini di grandezza più piccole.

 
 
Profilo della temperatura nella stratosfera e nella termosfera di Urano. L’area ombreggiata corrisponde allo strato con un’elevata abbondanza di idrocarburi.

L’etano e l’acetilene tendono a condensare nella parte inferiore, più fredda, della stratosfera e nella tropopausa formando strati di foschia, che potrebbero essere responsabili dell’aspetto “mite” di Urano. La concentrazione degli idrocarburi nella stratosfera del pianeta è significativamente inferiore rispetto a quanto riscontrato nelle stratosfere degli altri pianeti giganti.

Termosfera/corona

Lo strato più esterno dell’atmosfera di Urano è la termosfera/corona, che presenta una temperatura uniforme compresa tra 800 e 850 K. La fonte di calore responsabile di un valore così alto della temperatura non è stata ancora identificata, perché né le radiazioni solari ultraviolette né l’attività delle aurore polari, peraltro insignificanti rispetto alle aurore di Giove e Saturno, possono fornire la necessaria energia. Oltre a idrogeno molecolare, la termosfera-corona contiene una notevole quantità di atomi di idrogeno libero. La loro piccola massa insieme con le alte temperature spiega il perché la corona si estende fino a 50 000 km di altitudine dalla superficie, equivalenti a due raggi di Urano. Questa corona tanto estesa è una caratteristica che rende Urano unico tra i pianeti. I suoi effetti includono una forza di resistenza fluidodinamica sulle piccole particelle in orbita attorno al pianeta, determinando l’impoverimento degli anelli dalla polvere.

La termosfera, nella parte superiore della stratosfera, corrisponde alla ionosfera di Urano. Le osservazioni mostrano che la ionosfera si trova ad altitudini comprese tra i 2 000 e 10 000 km. La ionosfera di Urano è più densa di quella di Saturno e Nettuno; ciò potrebbe derivare dalla minore concentrazione di idrocarburi nella stratosfera.. La ionosfera è sostenuta principalmente dalla radiazione solare ultravioletta e la sua densità dipende dall’attività solare.

Bande, nubi e venti

Nel 1986, la Voyager 2 scoprì che l’emisfero meridionale visibile di Urano può essere suddiviso in due regioni: una luminosa calotta polare e bande equatoriali scure. Il loro confine si trova a circa -45° di latitudine. Una banda brillante tra le latitudini da -45 a -50° era la caratteristica più visibile dell’atmosfera esterna. Si pensa che questa struttura, chiamata il “collare del sud”, sia una regione densa di nubi di metano situate all’interno del campo di pressione compreso tra 1,3 e 2 bar. Oltre alla struttura a bande su larga scala, la Voyager 2 osservò dieci piccole nuvole luminose, parecchi gradi a nord del collare, mentre per il resto Urano appariva come un pianeta senza dinamica. La Voyager 2 arrivò durante la piena estate australe di Urano e non riuscì a osservare l’emisfero settentrionale. All’inizio di questo secolo, quando la regione polare settentrionale cominciava a rendersi visibile dalla Terra, il Telescopio Spaziale Hubble e i Telescopi Keck inizialmente non osservarono nessun collare o calotta polare nell’emisfero nord. Tuttavia, quando Urano passò oltre il suo equinozio, il collare meridionale era quasi scomparso, mentre un debole collare settentrionale iniziava a formarsi vicino alla latitudine 45°N.

 
 

La Grande Macchia Scura di Urano, scoperta dal Telescopio spaziale Hubble nel 2006.

Nel 1990, grazie al miglioramento delle tecniche osservative dalla Terra, si osservarono le nubi dell’emisfero settentrionale, che iniziavano a divenire visibili dalla Terra. Vennero trovate molte nubi luminose, più che nell’emisfero meridionale, anche perché nell’emisfero sud il collare luminoso tendeva a mascherarne diverse, togliendo contrasto alle immagini. La differenza principale tra i due emisferi pare sia l’altitudine più elevata alla quale si trovano le nubi dell’emisfero nord, che sembrano più piccole ma più nitide e brillanti. Molte piccole nuvole osservate avevano una durata di poche ore, tuttavia furono osservate formazioni più persistenti, come una “Macchia Scura” (Uranus Dark Spot) che mai era stata osservata prima del 2006.

Black and white image of Uranus reveals cloud details.

Immagine del telescopio che rivela la struttura delle nubi dell’atmosfera di Urano

La velocità massima dei venti è stata rilevata nell’emisfero settentrionale nei pressi della latitudine +50°N, dove i venti possono raggiungere facilmente gli 850 km/h, con punte fino a 900 km/h. I venti all’equatore spirano in direzione retrograda, ossia in direzione opposta alla rotazione del pianeta, con velocità comprese tra -100 e -50 m/s. La velocità del vento aumenta con la distanza dall’equatore, raggiungendo valori vicino allo zero a ± 20° di latitudine, dove si trova la temperatura minima della troposfera. Più vicino ai poli, i venti si muovono in moto diretto, nello stesso senso della rotazione di Urano. La velocità del vento continua ad aumentare raggiungendo i massimi a ± 60° di latitudine, prima di scendere a zero nei pressi dei poli. Nell’emisfero sud, il collare oscura le dinamiche atmosferiche nelle vicinanze del polo sud, impedendo la misurazione della velocità dei venti.

Clima

L’atmosfera di Urano è piuttosto regolare rispetto agli altri giganti gassosi, anche rispetto a Nettuno, il più simile per altri aspetti. Quando la Voyager 2 si avvicinò a Urano, furono osservate solo una decina di formazioni nuvolose su tutto il pianeta. Una spiegazione proposta per questo è il basso calore interno di Urano rispetto a quella degli altri pianeti giganti.

Cambiamenti stagionali

Per un breve periodo, da marzo a maggio del 2004, grandi nubi apparvero nell’atmosfera di Urano, compresa una tempesta persistente, mentre furono misurati venti spirare a oltre 800 km/h, rendendo così Urano simile nell’aspetto a Nettuno. Il 23 agosto 2006, ricercatori dello Space Science Institute e dell’Università del Wisconsin osservarono una macchia scura sulla superficie di Urano, consentendo agli astronomi di reperire maggiori informazioni sull’attività atmosferica di Urano. Non è completamente noto il perché di questi cambiamenti, ma sembrano essere legati all’inclinazione assiale di Urano che causa delle variazioni stagionali del clima di lunga durata, a seconda della posizione del pianeta nella sua orbita attorno al Sole. Determinare la natura di questa variazione stagionale non è semplice in quanto i dati atmosferici di Urano sono noti da meno della durata dell’anno uraniano. Dal 1950 si sono osservate variazioni di luminosità con massimi durante i solstizi e minimi durante gli equinozi. Anche alcune misure della temperatura stratosferica, a partire dal 1970, hanno mostrato cambiamenti più significativi in prossimità del solstizio del 1986.

Ci sono alcune ragioni per ritenere che cambiamenti fisici stagionali stiano avvenendo su Urano. Negli ultimi decenni l’emisfero sud è stato nettamente più brillante, tuttavia durante il precedente solstizio nell’emisfero nord il polo nord era più brillante, e nel 1990, dopo un certo periodo del solstizio nell’emisfero sud, la calotta polare sud si stava notevolmente oscurando (tranne il collare sud), confermando l’ipotesi che il polo che si avvicina al solstizio si illumina per un determinando periodo, e si oscura passato l’equinozio. Nel 2007 infatti, dopo l’equinozio, è apparsa una debole calotta polare nord, mentre quella meridionale diventò quasi invisibile, anche se il profilo dei venti è comunque leggermente asimmetrico, con i venti dell’emisfero nord generalmente un po’ più deboli di quelli dell’emisfero sud.

Si pensa che la variazione della luminosità dell’emisfero illuminato dal Sole derivi dal locale ispessimento delle nubi di metano e degli strati di foschia che si trovano nella troposfera. Il collare luminoso a -45° di latitudine è anch’esso collegato alle nubi di metano. Altre variazioni nella regione polare sud si possono spiegare con cambiamenti negli strati più bassi delle nubi. Le nubi polari spesse e la foschia possono inibire la convezione, ma ora che gli equinozi di primavera e autunno stanno arrivando su Urano, le dinamiche della convezione potrebbero cambiare di nuovo.

Campo magnetico

Prima dell’arrivo della Voyager 2, non era stata effettuata nessuna misurazione della magnetosfera di Urano, quindi la sua natura rimaneva misteriosa, anche se si riteneva che il campo magnetico fosse allineato ai venti solari. Gli astronomi, dopo i dati della Voyager si trovarono di fronte ad un campo magnetico particolare, non previsto precedentemente, in quanto inclinato di 59° rispetto all’asse di rotazione del pianeta, con i poli magnetici che si trovano in pratica all’equatore e non nei pressi dei poli. Inoltre il campo magnetico non si origina dal centro del pianeta, in quanto il suo dipolo magnetico è spostato verso l’emisfero sud di circa un terzo del raggio del pianeta. La magnetosfera di Urano risulta pertanto fortemente asimmetrica, con l’intensità del campo magnetico sulla superficie che va da 0,1 gauss (10 microtesla) dell’emisfero meridionale e può arrivare a 1,1 gauss (110 microtesla) nell’emisfero nord, ed una media in superficie di 0,23 gauss.

 
 

La complessità del campo magnetico di Urano, causata dalla forte inclinazione dei suoi poli magnetici rispetto all’asse di rotazione.

Il momento del dipolo di Urano è 50 volte quello della Terra, e come Nettuno il suo campo magnetico risulta fortemente inclinato, al contrario di quello terrestre e degli altri giganti gassosi, suggerendo che questa caratteristica potrebbe essere comune nei giganti di ghiaccio. La spiegazione per tale ipotesi è che, a differenza dei campi magnetici della Terra e degli altri pianeti, che hanno campi magnetici generati nel loro nucleo, i campi magnetici dei giganti di ghiaccio sono generati dal movimento di materia a profondità relativamente basse, come ad esempio un oceano di acqua e ammoniaca.

Nonostante lo strano allineamento, per altri versi la magnetosfera di Urano è come quella degli altri pianeti, con un limite esterno che si trova a circa 23 raggi in direzione del Sole, una magnetopausa a 18 raggi di Urano. La struttura della magnetosfera uraniana è diversa da quella di Giove e più simile a quella di Saturno. La “coda” della magnetosfera di Urano si estende dietro il pianeta, in direzione opposta al Sole, fino ad una decina di milioni di chilometri, prendendo una forma a spirale a causa della rotazione del pianeta. Il flusso di particelle è abbastanza alto da causare un’erosione dei satelliti in un intervallo di tempo molto rapido in termini astronomici, di 100.000 anni. Questa potrebbe essere la causa della colorazione uniformemente scura dei satelliti e degli anelli. Il fascio di particelle del campo magnetico sviluppa aurore visibili come archi luminosi attorno ai due poli magnetici, anche se, a differenza di Giove, le aurore di Urano sono poco significative, brevi e dall’aspetto puntiforme.

Anelli

 
 
Sopra schema degli anelli interni di Urano; sono mostrati alcuni satelliti e le loro orbite.
Sotto, schema degli anelli esterni

Urano possiede un sistema di anelli appena percettibile, composto da materia scura e polverizzata fino a 10 km di diametro. Il sistema di anelli fu scoperto il 10 marzo 1977 grazie all’osservatorio volante Kuiper Airborne Observatory. La scoperta fu inaspettata: gli astronomi avevano predisposto l’aereo appositamente per studiare un fenomeno molto raro, ovvero l’occultazione di una stella (SAO 158687) da parte di Urano, con l’intento di poter studiare la sua atmosfera, che avrebbe filtrato i raggi della stella, prima che questa scomparisse dietro il pianeta. Il C141 trasportava un telescopio di 90 cm e un fotometro fotoelettrico molto sensibile, capace di misurare le più piccole variazioni di luminosità. Quando i ricercatori analizzarono le loro osservazioni scoprirono che la stella era scomparsa brevemente dalla vista cinque volte prima e dopo l’occultamento da parte del pianeta. Dopo ripetuti controlli, nel dubbio di un difetto nello strumento, conclusero che intorno ad Urano doveva esserci un sistema di anelli analoghi a quelli di Saturno, almeno cinque. Successivamente vennero scoperti quattro ulteriori anelli. Tale sistema venne rilevato direttamente quando la sonda spaziale Voyager 2 passò nei pressi di Urano nel 1986. La Voyager scoprì anche altri due anelli, portando il numero totale degli anelli a undici.

una immagine del telescopio Hubble che mostra la distanza tra gli anelli ed il pianeta

Nel dicembre 2005 il telescopio spaziale Hubble fotografò due nuovi anelli, il più largo dei quali ha un diametro due volte più grande degli anelli precedentemente conosciuti. Data la lontananza da Urano, i nuovi anelli sono stati definiti “sistema di anelli esterno”. I due anelli sono così lontani dal pianeta che sono stati anche chiamati il “secondo sistema di anelli” di Urano. Gli scienziati che hanno effettuato lo studio ipotizzano che l’anello più esterno venga continuamente alimentato dal satellite Mab, scoperto nel 2005 e dal diametro di circa 20 km, che orbita all’interno di tale anello.

una immagine della Voyager 2 che mostra l’intera struttura ad anelli del pianeta

Nell’aprile del 2006, le immagini dei nuovi anelli dell’Osservatorio Keck hanno rivelato i colori degli anelli esterni: il più esterno è blu mentre l’altro è rosso. Una ipotesi che spiegherebbe il colore blu dell’anello esterno è che esso sia composto da minuscole particelle di ghiaccio d’acqua rilasciato dalla superficie di Mab, sufficientemente piccole da diffondere la luce blu.

Satelliti naturali

I satelliti naturali di Urano conosciuti sono 27, e tra questi i 5 principali sono: Ariel, Umbriel, Titania, Oberon, Miranda, nel gruppo dei satelliti regolari, che comprende anche 13 lune minori, ovvero Cordelia, Ofelia, Bianca, Cressida, Desdemona, Giulietta, Porzia, Rosalinda, Cupido, Belinda, Perdita, Puck e Mab. Si ritiene che tutti i satelliti regolari, che complessivamente sono diciotto, si siano formati mediante il tradizionale processo di accrescimento di dischi protoplanetari orbitanti intorno ad Urano, analogamente ai principali pianeti del sistema solare. I primi ad essere scoperti, da parte di William Herschel nel 1787, furono Titania e Oberon, mentre nel 1840 William Lassell scoprì Ariel e Umbriel. Passò poi quasi un secolo senza nessuna scoperta, fino a quando, nel 1948, Gerard Kuiper scoprì Miranda, il più piccolo dei satelliti principali di Urano. L’ultimo satellite scoperto è Margherita nel 2003, ma nel 2016, grazie all’analisi di alcune foto della sonda Voyager vecchie di trent’anni, si sono aggiunti altri due satelliti non confermati. Il sistema satellitare di Urano è il meno massiccio tra quelli dei pianeti giganti; infatti, la massa combinata dei cinque maggiori satelliti è meno della metà di quella del solo Tritone, la maggiore delle lune di Nettuno. Il più grande dei satelliti di Urano, Titania, ha un diametro di 1578 km, meno della metà della Luna, ma poco più grande di Rea, la seconda più grande luna di Saturno, il che rende Titania l’ottavo satellite più grande del Sistema Solare.

I satelliti irregolari, contrariamente ai regolari, presentano orbite di maggiori dimensioni, più eccentriche e inclinate rispetto al piano equatoriale di Urano. A questo gruppo appartengono nove satelliti minori: Francisco, Calibano, Stefano, Trinculo, Sicorace, Margherita, Prospero, Setebos e Ferdinando. Si ritiene che questi satelliti, a differenza dei regolari, non si siano formati all’interno del sistema uraniano, ma siano stati catturati, in tempi successivi, dalla forza di gravità del pianeta.

I 5 satelliti principali di Urano in ordine crescente di distanza dal pianeta (da sinistra a destra): Miranda, Ariel, Umbriel, Titania e Oberon. (non sono ovviamente rispettate le distanze)

Tra i satelliti di Urano, Ariel sembra avere la superficie più giovane con il minor numero di crateri da impatto, mentre la superficie di Umbriel appare la più antica. La superficie di Miranda appare caotica e pare sia stata interessata in passato da un’intensa attività geologica. Sono evidenti vari strati sovrapposti, alcuni recenti ed altri più antichi, solcati dai canyon più profondi del Sistema solare, che raggiungono anche i 20 km di profondità. Si pensa che la sua superficie abbia sofferto intense forze mareali nel passato, in un momento in cui la sua orbita era più eccentrica di quella odierna. Almeno un oggetto è legato a Urano in un’orbita a ferro di cavallo, che occupa il punto lagrangiano Sole-Urano L3, 83982 Crantor, che si muove in un’orbita temporanea all’interno della regione orbitale di Urano.[93] Un altro candidato oggetto in orbita a ferro di cavallo è 2010 EU65.

Nome

Diametro
medio

Massa

Raggio
orbitale
medio

Periodo orbitale

Urano VI

Cordelia

13 ± 2 km

0,8×1018 kg

49 752 km

0,3350338 giorni

Urano VII

Ofelia

15 ± 8 km

0,8×1018 kg

53 764 km

0,376400 giorni

Urano VIII

Bianca

21 ± 4 km

0,8×1018 kg

59 166 km

0,43457899 giorni

Urano IX

Cressida

80 ± 4 km

0,343×1018 kg

61 780 km

0,463570 giorni

Urano X

Desdemona

64 ± 8 km

0,178×1018 kg

62 680 km

0,473650 giorni

Urano XI

Giulietta

94 ± 8 km

0,557×1018 kg

64 350 km

0,493065 giorni

Urano XII

Porzia

135 ± 8 km

1,68×1018 kg

66 090 km

0,513196 giorni

Urano XIII

Rosalinda

72 ± 12 km

0,254×1018 kg

69 940 km

0,558460 giorni

Urano XXVII

Cupido

~17,8 km

3,8×1015 kg

74 800 km

0,618 giorni

Urano XIV

Belinda

81 ± 16 km

0,357×1018 kg

75 260 km

0,623527 giorni

Urano XXV

Perdita

~26,6 km

13×1015 kg

76 420 km

0,638 giorni

Urano XV

Puck

162 ± 4 km

2,89 × 1018 kg

86 010 km

0,761833 giorni

Urano XXVI

Mab

~24,8 km

1,0 × 1016 kg

97 734 km

0,923 giorni

Urano V

Miranda

471,6 ± 1,4 km

(66 ± 7) × 1018 kg

129 390 km

1,413479 giorni

Urano I

Ariel

1157,8 ± 1,2 km

(1,35 ± 0,12) × 1021 kg

191 020 km

2,520379 giorni

Urano II

Umbriel

1169,4 ± 5,6 km

(1,17 ± 0,13) × 1021 kg

266 300 km

4,144177 giorni

Urano III

Titania

1577,8 ± 3,6 km

(3,53 ± 0,09) × 1021 kg

435 910 km

8,705872 giorni

Urano IV

Oberon

1522,8 ± 5,2 km

(3,01 ± 0,07) × 1021 kg

583 520 km

13,463239 giorni

Urano XXII

Francisco

~12 km

1,3×1015 kg

4 276 000 km

-0,7299 anni

Urano XVI

Calibano

~98 km

0,73×1018 kg

7 231 000 km

-1,5871 anni

Urano XX

Stefano

~20 km

6×1015 kg

8 004 000 km

-1,8546 anni

Urano XXI

Trinculo

~10 km

0,75×1015 kg

8 504 000 km

-2,0780 anni

Urano XVII

Sicorace

~190 km

5,4×1018 kg

12 179 000 km

-3,5272 anni

Urano XXIII

Margherita

~11 km

1,3×1015 kg

14 345 000 km

4,6401 anni

Urano XVIII

Prospero

~30 km

21×1015 kg

16 256 000 km

-5,4136 anni

Urano XIX

Setebos

~30 km

21×1015 kg

17 418 000 km

-6,1185 anni

Urano XXIV

Ferdinando

~12 km

1,3×1015 kg

20 901 000 km

-7,7300 anni

Ariel

Ariel è la più luminosa e la quarta in ordine di grandezza delle 27 lune conosciute di Urano. Ariel orbita e ruota nel piano equatoriale di Urano, che è quasi perpendicolare all’orbita di Urano, e ha quindi un ciclo di stagioni estreme.

Ariel (moon).jpg

Ariel in scala di grigi, ripreso dalla Voyager 2. Il sistema di canyon Chasma Kachina si estende lungo la parte superiore dell’immagine.

Gran parte della conoscenza di Ariel deriva da un unico flyby di Urano effettuato dalla sonda Voyager 2, che è riuscita a riprendere l’immagine di circa il 35% della superficie della luna. Non ci sono per il momento piani per tornare a studiare la luna in modo più dettagliato, anche se vari progetti, come Urano orbiter and probe, vengono proposti di volta in volta.

L’immagine a colori di Ariel a più alta risoluzione ripresa da Voyager 2. Canyon ricoperti di pianure levigate sono visibili in basso a destra. Il cratere luminoso Laica è in basso a sinistra.

Dopo Miranda, Ariel è il secondo più piccolo dei cinque maggiori satelliti sferici di Urano, e il secondo più vicino al pianeta. Tra le più piccole delle 19 lune sferiche conosciute del Sistema Solare (è la 14ª per diametro), si ritiene che sia composto di ghiaccio e materiale roccioso più o meno in parti uguali. Come tutte le lune di Urano, Ariel si formò probabilmente da un disco di accrescimento che circondava il pianeta poco dopo la sua formazione e, come altre lune di grandi dimensioni, è verosimilmente differenziato, con un nucleo interno di roccia circondato da un mantello di ghiaccio. Ariel ha una superficie complessa composta da un ampio terreno craterizzato attraversato da un sistema di scarpate di faglia, canyon e creste. La superficie mostra segni di attività geologica più recente rispetto ad altre lune di Urano, molto probabilmente a causa delle forze di marea.

Mappa di Ariel in falso colore. Il prominente cratere non circolare (sotto e a sinistra del centro) è Yangoor. Parte di esso è stato cancellato durante la formazione delle terre di rilievi attraverso processi tettonici

Orbita

Tra le cinque maggiori lune di Urano, Ariel è la seconda più vicina al pianeta, orbitando alla distanza di circa 190.000 km. La sua orbita è poco eccentrica ed è inclinata molto poco rispetto all’equatore di Urano. Il suo periodo orbitale è di circa 2,5 giorni terrestri, coincidente con il suo periodo di rotazione, quindi una faccia della luna è sempre rivolta verso il pianeta (rotazione sincrona), completamente all’interno della magnetosfera di Urano. L’emisfero di coda (parte opposta rispetto alla direzione dell’orbita) dei satelliti senza atmosfera che orbitano all’interno di una magnetosfera viene colpito dal plasma magnetosferico co-rotante con il pianeta ed il bombardamento porta all’oscuramento dell’emisfero di coda, riscontrato per tutte le lune di Urano ad eccezione di Oberon.

immagini dal telescopio Hubble – Ariel transita avanti ad Urano, proiettando la sua ombra

Poiché Ariel, come Urano, orbita intorno al Sole quasi sul proprio fianco rispetto alla sua rotazione, gli emisferi settentrionale e meridionale sono rivolti verso il Sole o dalla parte opposta ai solstizi, avendo così un ciclo di stagioni estreme; i poli di Ariel vedono la notte permanente o la luce del giorno per mezzo anno di Urano (42 anni terrestri), con il Sole che passa vicino allo zenit sopra ad uno dei poli ad ogni solstizio. Il flyby di Voyager 2 coincise con il solstizio d’estate del 1986 dell’emisfero meridionale, quando quasi tutto l’emisfero nord non era illuminato. Una volta ogni 42 anni, quando Urano ha un equinozio e il suo piano equatoriale interseca la Terra, diventano possibili mutue occultazioni dei satelliti di Urano.

Ariel non si trova in alcuna risonanza orbitale con altri satelliti di Urano. In passato, tuttavia, potrebbe essere stato in risonanza 5:3 con Miranda, che quindi potrebbe essere stata in parte responsabile del suo riscaldamento (anche se il riscaldamento massimo attribuibile a una precedente risonanza 1:3 di Umbriel con Miranda doveva essere probabilmente circa tre volte maggiore). Ariel potrebbe essere stato un tempo legato in risonanza 4:1 con Titania, dalla quale si è poi affrancato. Fughe da una risonanza di moto medio sono molto più facili per le lune di Urano piuttosto che per quelle di Giove o di Saturno, a causa del minor grado di schiacciamento di Urano. Questa risonanza, che probabilmente si è verificata circa 3,8 miliardi di anni fa, avrebbe incrementato l’eccentricità orbitale di Ariel, con conseguente attrito mareale a causa delle forze di marea di Urano. Ciò potrebbe aver provocato il riscaldamento delle parti interne della luna di 20 K.

Composizione e struttura interna

Ariel, la quarta più grande delle lune di Urano, potrebbe avere la terza massa più grande. La densità di 1.66 g/cm3, significa che si compone di parti uguali di acqua ghiacciata e di un componente denso ghiacciato, rocce e materiale carbonioso comprendente composti organici pesanti noti come toline. La presenza di ghiaccio d’acqua è avvalorata da osservazioni spettroscopiche agli infrarossi che hanno rivelato ghiaccio d’acqua cristallina sulla superficie, con righe di assorbimento del ghiaccio più forti nell’emisfero di testa che in quello di coda. La causa di questa asimmetria non è nota, ma potrebbe essere correlata al bombardamento da parte di particelle cariche provenienti dalla magnetosfera di Urano, che è più forte sull’emisfero di coda. Le particelle energetiche tendono a polverizzare il ghiaccio d’acqua, decompongono il metano intrappolato nel ghiaccio come clatrato idrato ed oscurano altre sostanze organiche, lasciando un residuo ricco di carbonio.

A parte il ghiaccio d’acqua, l’unico altro composto identificato sulla superficie di Ariel dalla spettroscopia infrarossa è il biossido di carbonio (CO2), che si concentra soprattutto nell’emisfero di coda. Tra i satelliti di Urano, Ariel mostra la maggiore evidenza spettroscopica del CO2 ed è stato il primo su cui è stato scoperto questo composto. L’origine del biossido di carbonio non è del tutto chiara. Potrebbe essere prodotto localmente da carbonati o materiali organici sotto l’influenza delle particelle energetiche cariche provenienti dalla magnetosfera di Urano o dalla radiazione solare ultravioletta. Un’altra fonte possibile è il degassamento di CO2 primordiale intrappolato dal ghiaccio d’acqua all’interno di Ariel. La fuoriuscita di CO2 dall’interno può essere correlata alla passata attività geologica della luna.

Data la sua dimensione, la composizione di roccia/ghiaccio e la possibile presenza di sale o ammoniaca in soluzione per abbassare il punto di congelamento dell’acqua, l’interno di Ariel può essere differenziato in un nucleo roccioso circondato da un mantello ghiacciato. Se questo è il caso, il raggio del nucleo (372 km) è circa il 64% del raggio della luna, e la sua massa è circa il 56% della massa della luna; i parametri sono dettati dalla composizione della luna. La pressione nel centro di Ariel è di circa 0,3 GPa (3 kbar). Lo stato del mantello ghiacciato non è chiaro, anche se l’esistenza di un oceano sotterraneo è ritenuta improbabile.

Albedo e colore

Ariel è il più luminoso dei satelliti di Urano. La sua superficie mostra un effetto di opposizione: la riflettività diminuisce dal 53% ad un angolo di fase di 0° (albedo geometrica) al 35% con un angolo di circa 1°. L’albedo di Bond di Ariel è di circa il 23%, la più alta tra i satelliti di Urano. La superficie di Ariel è generalmente di colore neutro. Ci può essere una asimmetria tra l’emisfero di testa e quello di coda, con questo che sembra essere più rosso del primo del 2%. La superficie di Ariel generalmente non mostra alcuna correlazione tra albedo e geologia da un lato e colore dall’altro. Ad esempio, i canyon hanno lo stesso colore del terreno craterizzato. Tuttavia, i depositi chiari da impatto attorno ad alcuni crateri recenti sono di colore leggermente più blu. Ci sono anche alcuni punti leggermente blu che non corrispondono ad alcuna caratteristica nota della superficie.

Caratteristiche della superficie

La superficie di Ariel mostra all’osservazione tre tipi di terre: crateri, rilievi e pianure. Le principali strutture geologiche sono i crateri da impatto, i canyon, le scarpate di faglia, le creste e le depressioni.

La terra di crateri, una superficie ondulata ricoperta di numerosi crateri da impatto che circonda il polo sud di Ariel, è la più antica e più estesa unità geologica. È attraversata da una rete di scarpate di faglia, di canyon (graben) e di creste scoscese soprattutto alle medie latitudini dell’emisfero meridionale. I canyon, conosciuti anche come chasmata, rappresentano probabilmente graben formatisi attraverso processi tettonici, derivanti da sollecitazioni provocate dal congelamento di acqua (o di ammoniaca acquosa) all’interno della luna. Sono larghi 15–50 km e si estendono in direzione est o nord-est. Il fondo di parecchi canyon è convesso e si eleva di 1–2 km. A volte il fondo è separato dalle pareti del canyon da scanalature di circa 1 km di larghezza. I graben più ampi hanno delle scanalature (chiamate valles) che scorrono lungo le creste dei loro fondi convessi. Il canyon più lungo è il Chasma Kachina, di oltre 620 km (si estende fino nell’emisfero di Ariel che Voyager 2 non ha visto illuminato).

struttura dei graben con il fondo ricoperto di materiali lisci, probabilmente estrusi da fenomeni di criovulcanismo

La seconda tipologia di terra, quella di rilievi, consiste in strisce di creste e di avvallamenti che si estendono per centinaia di chilometri. I rilievi delimitano la terra di crateri e la tagliano in poligoni. All’interno di ogni striscia (larga fino a 25–70 km), ci sono singole creste e avvallamenti lunghi fino a 200 km di e distanti tra loro da 10 a 35 km. Queste strisce sono spesso continuazioni di canyon, suggerendo che potrebbero essere una forma modificata di graben oppure il risultato di una reazione diversa della crosta alle stesse sollecitazioni.

Le terre più recenti osservate su Ariel sono le pianure: zone relativamente basse e lisce che devono essersi formate in un lungo periodo di tempo, a giudicare dalla diversità dei loro crateri. Le pianure si trovano sul fondo di canyon e, in qualche depressione irregolare, nel mezzo di terreno craterizzato. In quest’ultimo caso sono separati dal terreno craterizzato da confini netti, che in alcuni casi si presentano in forma lobata. L’origine più probabile delle pianure è attraverso processi vulcanici; la geometria lineare delle loro bocche, le fanno assomigliare ai vulcani terrestri a scudo, e i margini topografici distinti indicano che il liquido eruttato era molto viscoso, forse una soluzione acqua-ammoniaca super-raffreddata, oppure si tratta di vulcanismo di ghiaccio solido. Lo spessore di questi ipotetici flussi di criolava è stimato nell’ordine di 1–3 km. I canyon si devono quindi essere formati in un tempo in cui la ripavimentazione endogena della superficie era ancora in corso su Ariel.

Ariel sembra essere uniformemente craterizzato rispetto ad altre lune di Urano; la relativa scarsità di crateri estesi indica che la sua superficie non risale alla formazione del Sistema Solare: ciò significa che Ariel, ad un certo punto della sua storia, deve essere stato completamente “riasfaltato”. Si pensa che la passata attività geologica di Ariel sia stata influenzata dalle forze di marea in un momento in cui la sua orbita era più eccentrica rispetto a quella misurata per la prima volta. Il cratere più esteso su Ariel, Yangoor, è largo solo 78 km, e mostra i segni di una deformazione successiva. Tutti i grandi crateri di Ariel hanno fondi appiattiti e picchi centrali, e alcuni sono circondati da depositi luminosi di materiale espulso. Molti crateri sono poligonali, il che indica che il loro aspetto è stato influenzato dalla preesistente struttura crostale. Nelle pianure craterizzate ci sono macchie chiare di grandi dimensioni (circa 100 km di diametro), che potrebbero essere crateri da impatto degradati. Se questo è il caso, sarebbero simili ai palinsesti su Ganimede. Si pensa che una depressione circolare di 245 km di diametro situata a 10°S 30°E sia una struttura da impatto estremamente degradata.

Origine ed evoluzione

Si ritiene che Ariel sia stato formato da un disco di accrescimento o nebulosa secondaria: un disco di gas e polvere esistente attorno a Urano per qualche tempo dopo la sua formazione o creato dal gigantesco impatto che molto probabilmente ha dato al pianeta la sua notevole inclinazione. La composizione precisa della nebulosa secondaria non è nota; tuttavia, la maggiore densità delle lune di Urano rispetto alle quelle di Saturno indica che potrebbe essere stata relativamente povera d’acqua. Significative quantità di carbonio e di azoto potrebbero essere state presenti sotto forma di monossido di carbonio (CO) e azoto molecolare (N2) al posto di metano e ammoniaca. Le lune formatesi in questa nebulosa conterrebbero meno ghiaccio d’acqua (con CO e N2 intrappolati come clatrato) e più roccia, spiegando così la densità più elevata.

Il processo di accrescimento durò probabilmente per diverse migliaia di anni. I modelli suggeriscono che gli impatti che accompagnarono l’accrescimento causarono il riscaldamento dello strato esterno di Ariel, raggiungendo una temperatura massima di circa 195 K ad una profondità di circa 31 km. Dopo la fine della formazione, lo strato di sottosuolo si raffreddò, mentre l’interno di Ariel si riscaldò a causa del decadimento di elementi radioattivi presenti nelle sue rocce. Lo strato raffreddato prossimo alla superficie si contrasse, mentre l’interno si espanse. Ciò causò forti tensioni interne nella crosta lunare, cosa che potrebbe aver portato a fessurazioni. Alcune scarpate di faglia e canyon potrebbero essere risultato di questo processo durato 200 milioni di anni.

Il riscaldamento iniziale dovuto all’accrescimento insieme con il continuo decadimento di elementi radioattivi e il probabile attrito mareale potrebbero aver portato alla fusione del ghiaccio se un antigelo come l’ammoniaca (sotto forma di idrato) o del sale fosse stato presente. La fusione potrebbe aver portato alla separazione del ghiaccio dalle rocce e alla formazione di un nucleo roccioso circondato da un mantello ghiacciato. Uno strato di acqua liquida (oceano) ricco di ammoniaca disciolta potrebbe essersi formato ai confini tra il nucleo e il mantello. La temperatura eutettica di questa miscela è di 176 K. L’oceano, tuttavia, è probabile che sia congelato da molto tempo. Il congelamento dell’acqua ha probabilmente portato all’espansione dell’interno, cosa che potrebbe aver causato la formazione dei canyon e l’obliterazione della superficie antica. Dall’oceano, i liquidi potrebbero essere stati in grado di eruttare in superficie, inondando il fondo dei canyon in un processo di criovulcanismo.

La modellazione termica di Dione, una luna di Saturno, simile ad Ariel per dimensioni, densità e temperatura della superficie, indica che la convezione di stato solido sarebbe potuta durare all’interno di Ariel per miliardi di anni, e che temperature superiori a 173 K (il punto di fusione dell’ammoniaca acquosa) potrebbero essere persistite in prossimità della sua superficie per diverse centinaia di milioni di anni dopo la formazione, e all’incirca un miliardo di anni nelle zone più vicine al nucleo.

L’osservazione e l’esplorazione

La magnitudine apparente di Ariel è di 14,4; simile a quella di Plutone nei pressi del perielio. Tuttavia, mentre Plutone può essere visto attraverso un telescopio di 30 cm di apertura, Ariel, a causa della vicinanza al bagliore di Urano, spesso non è visibile a telescopi con apertura di 40 cm.

la mappa di Ariel accertata con i criteri attualmente definiti dalla comunità scientifica internazionale

Le uniche immagini ravvicinate di Ariel sono state ottenute dalla sonda Voyager 2, che fotografò la luna nel corso del suo flyby di Urano con massimo avvicinamento di 127,000 km, inferiore rispetto alla distanza della sonda da tutte le altre lune di Urano ad eccezione di Miranda. Le migliori immagini di Ariel hanno una risoluzione spaziale di circa 2 km e coprono circa il 40% della superficie, di cui solo il 35% è stato fotografato con la qualità richiesta per la mappatura geologica e il conteggio dei crateri. Al momento del flyby l’emisfero meridionale di Ariel era rivolto verso il Sole, così che l’emisfero settentrionale non poté essere studiato. Nessun altro veicolo spaziale ha mai visitato il sistema di Urano, e nessuna missione è prevista verso Urano e le sue lune. La possibilità di inviare la Cassini verso Urano era stata valutata in  pianificazione per una possibile estensione della missione, ma ci sarebbero voluti una ventina d’anni per arrivare al sistema di Urano dopo essere partiti da Saturno.

Umbriel

Umbriel (moon).jpg

Umbriel ripreso dalla sonda Voyager 2

Superficie

Umbriel è caratterizzata dalla superficie più scura fra tutti i satelliti di Urano, riflettendo solo il 16% della luce che raggiunge la sua superficie, e risulta così la più scura delle lune di Urano in un processo ancora da chiarirsi. Ha un diametro di circa 1.200 km.

Uranus’ moon Umbriel

una mappa in falsi colori contrastati della superficie di Umbriel

La superficie del satellite è pesantemente craterizzata; la sua caratteristica più rilevante, nota con il nome di Wunda, è un grande anello di materiale brillante. Sembra naturale presumere che si tratti di un cratere, ma l’esatta natura della formazione è ancora incerta.

Struttura interna

Umbriel è la terza più grande e la quarta più massiccia luna di Urano con una densità di circa 1.39 g/cm^3, che indica una consistenza principalmente di ghiaccio d’acqua con una componente non di ghiaccio stimata intorno al 40% della sua massa. Questa massa non ghiacciata potrebbe essere roccia o materiale organico carbonaceo.
La presenza del ghiaccio d’acqua è stata rilevata anche da osservazioni spettroscopiche nell’infrarosso che hanno svelato come le bande di assorbimento del ghiaccio d’acqua sono molto più forti su uno degli emisferi (quello rivolto nella direzione dell’orbita intorno ad Urano) rispetto all’opposto. Il motivo di quest’asimmetria è sconosciuto ma potrebbe avere avuto a che fare con il continuo bombardamento di particelle cariche da parte della magnetosfera di Urano.

Orbita

Attualmente Umbriel non è coinvolto in alcuna risonanza orbitale con altri satelliti ma in passato potrebbe essere stato in risonanza 1:3 con Miranda e questo potrebbe aver contribuito a riscaldare l’interno della luna, causando qualche attività geologica. Ma dopo che Miranda è sfuggita alla risonanza, l’eccentricità dell’orbita di Umbriel è diminuita, eliminando la fonte di calore.

Uranus and Moons (Labeled)

Urano e le sue lune principali riprese dal telescopio ESO

Probabilmente Umbriel conserva intatto il registro di tutti gli impatti che ha subito nella sua storia, ma ci sono ancora anche i segni della sua attività geologica iniziale. Si possono ancora notare alcune tracce di poligoni e forme complesse lunghe centinaia di km, causate probabilmente dal movimento della crosta. Se ci fosse mai stato un oceano in passato, questo dovrebbe ormai essere ghiacciato da molto, anche se potrebbe essere durato abbastanza a lungo con all’interno quantità di ammoniaca molto alte. 

Per ragioni di brevità espositiva, preferiamo non ripetere molte caratteristiche delle lune di Urano che sono simili tra loro.

Titania

Titania è la più grande delle lune di Urano e, con un diametro di 1578 km, l’ottava del sistema solare. Scoperta da William Herschel nel 1787, Titania prende il nome dalla Regina delle Fate in Sogno di una notte di mezza estate di Shakespeare.

Titania (moon) color.jpg

immagine di Titania ripresa dalla sonda Voyager 2

Titania è costituita da ghiaccio e roccia in misura all’incirca uguale, ed è probabilmente differenziata in un nucleo di roccia e un mantello di ghiaccio. Uno strato di acqua liquida potrebbe essere presente al confine tra nucleo e mantello. La superficie di Titania (piuttosto scura e leggermente rossa) sembra essere stata modellata sia da impatti che da processi endogeni. È coperta da numerosi crateri da impatto che raggiungono i 326 km di diametro, ma in misura minore rispetto alla superficie della luna più esterna di Urano, Oberon. Titania probabilmente ha subito un precoce evento di ripavimentazione endogena che ha modificato la sua vecchia superficie molto craterizzata. La superficie di Titania è attraversata da un sistema di enormi canyon e scarpate, come risultato dell’espansione del suo interno durante le ultime fasi della sua evoluzione. Come tutte le lune maggiori di Urano, Titania si è probabilmente formata da un disco di accrescimento che circondava il pianeta poco dopo la sua formazione.

L’immagine a più alta risoluzione di Titania ripresa da Voyager 2 mostra pianure moderatamente craterizzate, enormi fratture e lunghe scarpate. Nella parte inferiore, una regione di pianure più lisce è attraversata dal graben Belmont Chasma.

La spettroscopia agli Infrarossi condotta dal 2001 al 2005 ha rivelato la presenza di ghiaccio d’acqua e di anidride carbonica ghiacciata sulla superficie di Titania, il che indica che la luna potrebbe possedere una tenue atmosfera di anidride carbonica con una pressione superficiale di circa un decitrilionesimo di bar. Misurazioni della pressione superficiale durante l’occultazione di una stella da parte di Titania hanno stabilito un limite superiore di 10-20 nbar.

Orbita

Titania orbita Urano a una distanza di circa 436.000 km ed è, tra le sue cinque lune principali, la seconda più lontana dal pianeta. L’orbita di Titania è poco eccentrica e pochissimo inclinata rispetto all’equatore di Urano. Il suo periodo orbitale è di 8,7 giorni circa, e coincide con il suo periodo di rotazione, quindi Titania è un satellite in rotazione sincrona, con un lato sempre rivolto verso il pianeta.

la foto a più ampia risoluzione della Voyager 2 della superficie di Titania

L’orbita di Titania si trova completamente all’interno della magnetosfera di Urano. Ciò è importante, perché gli emisferi di coda dei satelliti in orbita all’interno di una magnetosfera vengono colpiti dal plasma della magnetosfera, che è in rotazione con il pianeta. Questo bombardamento può comportare l’oscuramento degli emisferi di coda, fatto che si verifica per tutte le lune di Urano, ad eccezione di Oberon.

Poiché Urano orbita intorno al Sole quasi su un fianco, e le sue lune orbitano nel piano equatoriale del pianeta, esse (tra cui Titania) sono soggette ad un ciclo stagionale estremo. Entrambi i poli trascorrono 42 anni in un buio completo, e altri 42 anni alla luce solare continua, con il Sole che sorge vicino allo zenit su uno dei poli ad ogni solstizio. Il sorvolo ravvicinato di Voyager 2 coincise con il solstizio d’estate dell’emisfero meridionale nel 1986, quando quasi tutto l’emisfero settentrionale non era illuminato. Una volta ogni 42 anni, quando Urano ha un equinozio e il suo piano equatoriale interseca la Terra, diventano possibili mutue occultazioni dei satelliti di Urano. Nel 2007-2008 furono osservati alcuni eventi di questo tipo, tra cui due occultazioni di Titania da parte di Umbriel, il 15 agosto e l’8 dicembre 2007.

Composizione e struttura interna

Titania è la luna più grande e più massiva di Urano, l’ottava luna del Sistema Solare per massa. La sua densità di 1,71 g/cm3, molto superiore alla densità media dei satelliti di Saturno, indica che è composta in proporzioni quasi uguali di ghiaccio d’acqua e di dense componenti non ghiacciate, forse roccia e materiale carbonioso, tra cui composti organici pesanti. La presenza di ghiaccio d’acqua cristallino sulla superficie della luna è supportata da osservazioni spettroscopiche a raggi infrarossi fatte nel 2001-2005. Le bande di assorbimento del ghiaccio d’acqua sono un po’ più forti sull’emisfero di testa che sull’emisfero di coda, il contrario di ciò che si osserva su Oberon, dove l’emisfero di coda presenta maggiori evidenze di ghiaccio d’acqua. La causa di questa asimmetria non è conosciuta, ma potrebbe essere correlata al bombardamento di particelle cariche della magnetosfera di Urano, che è più intenso nell’emisfero di coda (a causa della co-rotazione del plasma). Le particelle energetiche tendono a erodere il ghiaccio, a decomporre il metano intrappolato nel ghiaccio sotto forma di idrato clatrato e a scurire altri composti organici, lasciandosi dietro un residuo scuro ricco di carbonio.

A parte l’acqua, l’unico altro composto identificato sulla superficie di Titania mediante spettroscopia infrarossa è l’anidride carbonica, concentrata principalmente nell’emisfero di coda. L’origine del biossido di carbonio non è completamente chiara. Potrebbe essere prodotta localmente da carbonati o materiali organici sotto l’influenza della radiazione ultravioletta solare o delle particelle cariche provenienti dalla magnetosfera di Urano. Quest’ultimo processo spiegherebbe l’asimmetria nella sua distribuzione, poiché l’emisfero di coda è soggetto a una più intensa influenza magnetosferica rispetto a quello di testa. Un’altra fonte possibile è il degassamento del CO2 primordiale intrappolato dal ghiaccio d’acqua all’interno di Titania. La fuga di CO2 dall’interno potrebbe essere correlata alla passata attività geologica su questa luna.

Titania potrebbe essere differenziata in un nucleo roccioso circondato da un mantello di ghiaccio. Se questo è il caso, il raggio del nucleo di 520 km è circa il 66% del raggio della luna, e la sua massa è circa il 58% della massa totale; le proporzioni sono dettate dalla composizione della luna. La pressione al centro di Titania è di circa 0,58 GPa (5,8 kbar). L’attuale stato del manto ghiacciato non è chiaro. Se il ghiaccio contenesse sufficiente ammoniaca o altro antigelo, Titania potrebbe possedere uno strato di oceano liquido al confine nucleo-mantello. Lo spessore di questo oceano, ammesso che esista, può arrivare fino a 50 chilometri e la sua temperatura è di 190 K circa. C’è da notare tuttavia che la struttura interna di Titania dipende in larga misura dalla sua storia termica, attualmente poco conosciuta.

Caratteristiche della superficie

Tra le lune di Urano, Titania è di luminosità intermedia tra gli oscuri Oberon e Umbriel e i luminosi Ariel e Miranda. La sua superficie si presenta con un forte effetto di opposizione: il suo potere riflettente diminuisce dal 35% ad un angolo di fase di 0° (albedo geometrica) al 25% ad un angolo di circa 1°. Titania ha un’albedo di Bond piuttosto bassa, circa il 17%. La sua superficie è per lo più rossastra, meno comunque rispetto a quella di Oberon. Tuttavia, i più recenti depositi da impatto danno maggiormente sul blu, mentre le pianure lisce situate nell’emisfero di testa vicino al cratere Ursula e lungo alcuni graben sono un po’ più rosse. Potrebbe esserci un’asimmetria cromatica tra gli emisferi testa e di coda con il primo più rosso del secondo dell’8%. Tuttavia, questa differenza è collegata alle pianure lisce e potrebbe essere casuale. L’arrossamento delle superfici probabilmente dipende dalla meteorologia spaziale causata da bombardamenti di particelle cariche e di micro meteoriti in un arco di tempo dell’età del sistema solare. Tuttavia, l’asimmetria cromatica di Titania probabilmente è più relativa all’accrescimento di materiale rossastro proveniente da parti esterne al sistema di Urano, forse da satelliti irregolari, che si sarebbe depositato prevalentemente sull’emisfero di testa.

The right half of a round spherical body that is illuminated. The terminator runs along the right edge. A large crater with a central pit can be seen at the terminator in the upper half of the image. A large canyon runs from the darkness at the lower-right side to visible center of the body.

il Messina Chasma

Gli scienziati hanno classificato tre caratteristiche geologiche su Titania: crateri, chasmata (canyon) e rupes (scarpate). La superficie di Titania è molto meno craterizzata di quelle di Oberon e di Umbriel, il che significa che è molto più giovane. Il diametro dei crateri varia da pochi chilometri a 326 km per il più grande, il cratere Gertrude. Alcuni crateri (ad esempio, Ursula e Jessica) sono circondati da materiale espulso (ejecta) luminoso, raggiere di ghiaccio relativamente fresco. Tutti i grandi crateri di Titania presentano fondi piatti e picchi centrali, a parte Ursula che ha un pozzo al centro. A ovest di Gertrude c’è una zona con topografia irregolare, il cosiddetto “bacino senza nome”, che potrebbe essere un altro bacino da impatto fortemente degradato con un diametro di circa 330 chilometri.

sopra Proiezione piana della superficie mappata di Titania

sotto Proiezione stereografica dell’emisfero sud

La superficie di Titania è attraversata da un sistema di enormi faglie, o scarpate. In alcuni luoghi, due scarpate parallele segnano depressioni nella crosta del satellite, con la formazione di graben, a volte chiamati canyon. Il più importante tra i canyon di Titania è Messina Chasmata, che si estende per circa 1.500 chilometri dall’equatore fin quasi al polo sud. I graben su Titania sono larghi 20–50 km con una profondità di 2–5 km circa. Le scarpate non collegate a canyon si chiamano Rupes, come Rousillon Rupes vicino al cratere Ursula. Le regioni lungo alcune scarpate e vicino a Ursula appaiono lisce alla risoluzione delle immagini di Voyager. Queste pianure lisce sono state probabilmente ripavimentate successivamente nella storia geologica di Titania, dopo la formazione della maggior parte dei crateri. La ripavimentazione potrebbe essere stata sia di natura endogena, con eruzione di materiale fluido dall’interno (criovulcanismo), oppure dovuta alla copertura da parte del materiale espulso dai vicini crateri di grandi dimensioni. I graben sono probabilmente gli elementi geologici più giovani su Titania: essi intersecano tutti i crateri e le pianure lisce.

The terminator region of Titania, one of Uranus' five large moons, was captured in this Voyager 2 image obtained in the early morning hours of Jan. 24, 1986.

alcuni dettagli ingranditi della superficie della regione terminale di Titania

La geologia di Titania è stata influenzata da due forze concorrenti: la formazione di crateri da impatto e la ripavimentazione endogena. La prima ha agito durante tutta la storia della luna e ha influenzato tutte le superfici. Anche i processi della seconda sono stati di natura globale, ma attivi soprattutto per un periodo successivo alla formazione della luna. Essi hanno cancellato il terreno originale molto craterizzato, spiegando così il numero piuttosto basso di crateri da impatto sulla attuale superficie. Ulteriori episodi di ripavimentazione potrebbero essersi verificati successivamente portando così alla formazione di pianure lisce. In alternativa le pianure lisce possono essere coperture di materiale espulso dai crateri nelle vicinanze. I processi endogeni più recenti sono stati soprattutto di natura tettonica e hanno causato la formazione dei canyon, che sono in realtà crepe giganti della crosta di ghiaccio. La rottura della crosta è stata causata dall’espansione globale di Titania dello 0,7% circa.

Atmosfera

La presenza di anidride carbonica sulla superficie indica che Titania potrebbe avere una tenue atmosfera stagionale di CO2, molto simile a quella della luna gioviana Callisto. È poco probabile che siano presenti altri gas, come azoto o metano, in quanto la debole gravità della luna non avrebbe potuto impedire loro di disperdersi nello spazio. Alla temperatura massima raggiungibile durante il solstizio d’estate di Titania (89 K), la pressione di vapore di anidride carbonica è di 3 nbar circa. L’8 settembre 2001, Titania occultò una stella (HIP106829) con magnitudine apparente di 7,2; fu questa l’occasione per determinare con più precisione il diametro della luna, le sue effemeridi e di rilevare l’esistenza di un’eventuale atmosfera. I dati non hanno rivelato alcuna atmosfera ad una pressione superficiale di 10-20 nanobars; se esistesse, dovrebbe essere molto più sottile di quella di Tritone o di Plutone.

La particolare geometria del sistema di Urano determina che i poli delle lune ricevano più energia solare rispetto alle loro regioni equatoriali. Poiché la pressione di vapore della CO2 aumenta rapidamente con la temperatura, ciò potrebbe portare all’accumulo di anidride carbonica nelle regioni a bassa latitudine, dove essa potrebbe trovarsi stabilmente in zone ad elevata albedo e in regioni ombreggiate della superficie sotto forma di ghiaccio. Durante l’estate, quando le temperature polari raggiungono anche 85-90 K, l’anidride carbonica sublima migrando verso il polo opposto e verso le regioni equatoriali, dando luogo a una specie di ciclo del carbonio. L’anidride carbonica ghiacciata può essere eliminata dalle zone fredde dove si è accumulata dalle particelle della magnetosfera, che la rimuovono dalla superficie. Si ritiene che Titania abbia perso una notevole quantità di anidride carbonica dalla sua formazione 4,6 miliardi anni fa.

Origine ed evoluzione

Si ritiene che Titania si sia formata per accrescimento nella sub-nebulosa di Urano, un disco di gas e polvere che era presente attorno a Urano per qualche tempo dopo la sua formazione, oppure creato da un impatto gigantesco che molto probabilmente ha dato a Urano la sua elevata obliquità. La precisa composizione della nebulosa non è conosciuta, tuttavia, la densità piuttosto alta di Titania e di altre lune di Urano rispetto alle lune di Saturno indica che era povera d’acqua. Significative quantità di azoto e di carbonio potrebbero essere state presenti sotto forma di monossido di carbonio e N2 al posto di ammoniaca e metano. Le lune che si formarono in questa nebulosa contenevano meno ghiaccio d’acqua (con CO e N2 intrappolati come clatrato) e più roccia, determinando così la maggiore densità.

L’accrescimento di Titania probabilmente durò per diverse migliaia di anni. Gli impatti che accompagnarono l’accrescimento causarono il riscaldamento dello strato esterno della luna. La temperatura massima di circa 250 K (-23°), è stata raggiunta a una profondità di 60 chilometri circa. Dopo la fine della formazione, lo strato sotto la superficie si raffreddò, mentre l’interno di Titania si riscaldò a causa del decadimento di elementi radioattivi presenti nelle rocce. Lo strato freddo in prossimità della superficie si contrasse, mentre l’interno si espanse. Ciò causò forti tensioni distensive nella crosta lunare che portarono a fratture. Alcuni degli attuali canyon potrebbero essere il risultato di questo processo durato per circa 200 milioni di anni, il che significa che ogni attività endogena ebbe fine miliardi di anni fa.

Il riscaldamento iniziale dovuto all’accrescimento insieme con il continuo decadimento di elementi radioattivi erano probabilmente abbastanza forti da fondere il ghiaccio in presenza di anticongelanti come ammoniaca (sotto forma di idrato) o sale. Successive fusioni potrebbero aver determinato la separazione del ghiaccio dalla roccia e la formazione di un nucleo roccioso circondato da un mantello di ghiaccio. Uno strato di acqua liquida (oceano) ricco di ammoniaca disciolta potrebbe aver formato la zona di confine tra il nucleo e il mantello. La temperatura eutettica di questa miscela è 176 K (-97°). Se la temperatura fosse scesa al di sotto di questo valore, l’oceano si sarebbe successivamente congelato. Il congelamento dell’acqua avrebbe causato l’espansione dell’interno, che potrebbe essere stata responsabile della formazione della maggior parte dei canyon. C’è da tener presente che l’attuale conoscenza dell’evoluzione geologica di Titania è piuttosto limitata.

Esplorazione

Finora le uniche immagini ravvicinate di Titania sono state riprese dalla sonda Voyager 2, durante il flyby di Urano. Poiché la distanza minima tra il Voyager 2 e Titania era solo di 365.200 km, le migliori immagini di questa luna hanno una risoluzione spaziale di circa 3,4 km (solo Miranda e Ariel sono stati ripresi con una risoluzione maggiore). Le immagini coprono circa il 40% della superficie, ma solo il 24% è stato fotografato con la precisione richiesta dalla cartografia geologica. Al momento del sorvolo ravvicinato, l’emisfero meridionale di Titania (come quello delle altre lune) era puntato verso il Sole, così che l’emisfero nord era al buio e pertanto non poté essere studiato.

Oberon 

Oberon è il più esterno dei satelliti di Urano. Il nome deriva dalla commedia di Shakespeare Sogno di una notte di mezza estate, in cui Oberon è il re delle fate.

Voyager 2 picture of Oberon.jpg

immagine di Oberon ripresa dalla Voyager 2; sul bordo inferiore sinistro è visibile una prominenza alta oltre 6000m

Orbita

Oberon orbita intorno ad Urano ad una distanza media di 584.000 km ed è così il più lontano dei cinque satelliti principali del pianeta. La sua orbita è caratterizzata da una modesta eccentricità e inclinazione orbitale rispetto all’equatore di Urano ed il suo periodo orbitale è di circa 13,5 giorni, coincidente con il suo periodo di rivoluzione; pertanto la sua orbita è in rotazione sincrona, con la conseguenza di mostrare sempre la stessa faccia al suo pianeta.

Le dimensioni di Urano e dei suoi satelliti: da sinistra, Puck, Miranda, Ariel, Umbriel, Titania, Oberon. (Composizione dalle foto di Voyager 2)

L’orbita di Oberon rimane per una parte significativa del suo percorso al di fuori della magnetosfera di Urano, per cui la sua superficie viene direttamente colpita dal vento solare. Il sorvolo del Voyager 2 è coinciso con il solstizio estivo del 1986 dell’emisfero meridionale e pertanto l’intero emisfero settentrionale non era illuminato. Ogni 42 anni, quando Urano ha un equinozio e il suo piano equatoriale intersca quello terrestre, è possibile l’occultazione reciproca dei suoi satelliti. Un evento di questo tipo è stato osservato il 4 maggio 2007 quando Oberon ha occultato Umbriel.

Composizione e struttura interna

Oberon è per dimensioni il secondo satellite di Urano, dopo Titania, e il decimo del sistema solare (dopo Ganimede, Titano, Callisto, Io, la nostra Luna, Europa, Tritone, Titania e Rea). La sua densità è di 1,63 g/cm3, più alta della densità tipica dei satelliti di Saturno, indicando che è costituito in proporzioni circa uguali di ghiaccio d’acqua e altri elementi non ghiacciati e più densi, tra cui rocce e materiali ricchi in carbonio inclusi i composti organici.

 
Immagine in falsi colori di Oberon, elaborata al computer. La regione in bianco è quella non fotografata dalla sonda Voyager 2. Il grande cratere centrale con il fondo scuro è Amleto; alla sua sinistra il cratere Otello mentre la Mommur Chasma si trova in alto a sinistra

La presenza di ghiaccio d’acqua è supportata da osservazioni spettroscopiche che hanno rivelato la presenza di cristalli di ghiaccio sulla superficie del satellite. La presenza di bande di assorbimento dell’acqua è più forte nell’emisfero anteriore che in quello posteriore, che è l’esatto contrario di quello che avviene sugli altri satelliti di Urano. La causa di questa asimmetria non è nota, ma potrebbe essere legata agli effetti di modifica del suolo conseguenti ad impatti meteoritici, che normalmente sono più diffusi sull’emisfero anteriore e che disperdono il ghiaccio della superficie lasciandosi dietro una fascia più scura di materiale non ghiacciato. Il materiale scuro potrebbe essere il risultato dell’effetto della radiazione sui clatrati di metano o di oscurimento dei composti organici a causa dell’irraggiamento.

Oberon-NASA names en

alcune delle evidenze morfologiche di superficie di Oberon

È possibile che in Oberon si sia differenziato un nucleo interno roccioso circondato da un mantello ghiacciato. In questo caso il raggio del nucleo (480 km) corrisponderebbe al 63% del raggio del satellite e la sua massa sarebbe il 54% di quella totale (i valori sono calcolati in base alla composizione del satellite). La pressione al centro di Oberon è di circa 0,5 GPa (5 kbar). Lo stato attuale del mantello ghiacciato non è ancora chiaro. Se il ghiaccio contiene abbastanza ammoniaca o un altro anticongelante, Oberon potrebbe possedere uno strato liquido al confine tra il nucleo e il mantello. Lo spessore di questo oceano, sempre che esista, potrebbe raggiungere i 40 km e la sua temperatura i 180 K. È da notare tuttavia che la struttura interna di Oberon dipende fortemente dalla sua storia termica, attualmente poco conosciuta.

Superficie

Possiede una superficie ghiacciata e ricoperta di crateri, che non mostra tracce evidenti di attività tettonica, a parte la presenza di alcuni materiali scuri che sembrano ricoprire la superficie di alcuni crateri. Possiede almeno una montagna molto alta che raggiunge i 6000m di altitudine, una altezza pari a 7,8 millesimi del raggio del satellite di gran lunga superiore ai 1.4 millesimi del raggio terrestre che raggiunge l’Everest.

Voyager 2 close-up of Oberon features

un particolare della superficie di Oberon scattato dalla Voyager 2

Oberon è il secondo satellite più scuro di Urano dopo Umbriel. La sua superficie mostra un forte effetto di opposizione: la sua riflettività decresce da un’albedo del 31% a un angolo di fase 0° fino al 22% ad un angolo di circa 1°. Oberon ha una bassa albedo di Bond, attorno al 14%. La sua superficie è generalmente rossastra, tranne che nei depositi da impatti recenti che sono di colore neutro o bluastro. Oberon è infatti il più rosso tra i satelliti maggiori di Urano.

I suoi emisferi anteriore e posteriore sono asimmetrici nella colorazione: il secondo appare più rosso del primo perché contiene più materiale rosso scuro. L’arrossamento della superficie è spesso collegato all’erosione spaziale causata dal bombardamento della superficie da parte di particelle e micrometeoriti che hanno l’età del sistema solare. L’asimmetria di colore di Oberon è però più probabilmente collegata all’accrezione di materiale rossastro che spiraleggia dalle zone esterne del sistema di Urano, presumibilmente dai satelliti irregolari, e influisce soprattutto sull’emisfero anteriore.

Gli studiosi hanno identificato due classi di caratteristiche geologiche su Oberon: crateri da impatto e chasmata (profondi canyon o depressioni, come le fosse tettoniche o le scarpate terrestri). La superficie di Oberon è la più craterizzata tra tutti i satelliti di Urano, con una densità di crateri che si approssima alla saturazione, cioè al punto in cui la formazione di nuovi crateri è bilanciata dalla distruzione di quelli più vecchi. Questa elevata craterizzazione indica che Oberon ha la superficie più antica tra i satelliti di Urano. Il diametro dei crateri arriva fino ai 206 km di Amleto, il più grande tra i crateri conosciuti. Da alcuni dei crateri maggiori si dipartono raggi di materiale espulso più chiaro che consiste principalmente di ghiaccio depositatosi in tempi recenti. Il fondo dei crateri maggiori come Amleto, Otello e Macbeth è coperto di materiale molto scuro depositatosi dopo la loro formazione.

Un picco alto circa 11 km è stato osservato in alcune immagini del Voyager vicino al bordo esterno meridionale di Oberon; potrebbe trattarsi del picco centrale di un grande bacino da impatto largo circa 375 km. La superficie di Oberon è intersecata da un sistema di canyon, che sono tuttavia meno diffusi di quelli trovati su Titania. Le fiancate dei canyon sono delimitate dalle normali scarpate (alcune definibili come graben), alcune delle quali appaiono antiche, altre recenti: su queste ultime sono presenti depositi brillanti provenienti da grandi crateri, indicanti che la loro formazione è recente. Il chasma più imponente è il Mommur Chasma.

La geologia di Oberon è stata influenzata da forze contrapposte: la formazione di crateri da impatto e il rimodellamento della superficie provocato da effetti endogeni. La prima è stata attiva durante l’intera vita del satellite ed è la principale responsabile del suo aspetto odierno. I processi endogeni, di natura tettonica, sono stati attivi per un periodo successivo alla formazione del satellite e hanno portato alla formazione dei canyon, risultanti da fessurazioni della crosta ghiacciata, che hanno in parte cancellato la vecchia superficie. La fessurazione della crosta è stata causata da un’espansione di Oberon dello 0,5% avvenuta in due fasi corrispondenti ai vecchi e nuovi canyon.

La natura delle chiazze scure, presenti soprattutto nell’emisfero anteriore e all’interno dei crateri, non è ben nota. Secondo alcuni esse sono di origine criovulcanica, mentre altri ritengono che gli impatti abbiano portato in superficie del materiale più scuro interrato al di sotto della crosta ghiacciata. Nel secondo caso Oberon dovrebbe essere almeno parzialmente differenziato, con la crosta ghiacciata disposta al di sopra dell’interno non differenziato.

Esplorazione

Le uniche immagini ravvicinate di Oberon sinora disponibili provengono dalla sonda Voyager 2, che ha fotografato la superficie del satellite nel corso del suo fly-by del sistema di Urano, il 24 gennaio 1986. La distanza minima di avvicinamento della sonda è stata di 470.600 km ed ha permesso di ottenere immagini con una risoluzione massima di circa 6 km. Le immagini coprono circa il 40% della superficie, ma solo per il 25% di essa è stato possibile ottenere una risoluzione sufficiente per produrre una mappatura geologica del satellite. All’epoca del sorvolo infatti l’emisfero meridionale di Oberon era rivolto verso il Sole, cosicché l’emisfero settentrionale risultava troppo scuro per poter essere studiato.

Miranda

Miranda è il più piccolo ed interno satellite di Urano tra le cinque lune maggiori. Scoperto da Gerard Kuiper il 16 febbraio 1948 dall’osservatorio McDonald. È designato anche Urano V. Ad oggi, le uniche immagini ravvicinate di Miranda provengono dalla sonda spaziale Voyager 2. È stato fotografato e quindi studiato soltanto l’emisfero meridionale della luna, perché illuminato dalla luce solare durante l’incontro. È stata una fortunata coincidenza che la luna fosse l’oggetto a minor distanza, circa 30.000 km dalla sonda, dato che si è rivelato l’oggetto più interessante nel sistema di Urano: le immagini riprese, infatti, rivelano una passata attività geologica nettamente superiore a quella che ha interessato le altre lune del pianeta. Il Voyager 2 ha dovuto avvicinarsi il più possibile ad Urano per avere la spinta necessaria a raggiungere Nettuno, questo ha permesso di avere immagini con risoluzione, della superficie di Miranda, di alcune centinaia di metri.

Miranda.jpg

Polo Sud di Miranda ripreso dal Voyager 2 da 480 km ad una risoluzione di 2.7 km

La superficie sembra essere composta da ghiaccio d’acqua mista a composti di silicati e carbonati, con presenza anche di ammoniaca. Come le altre lune di Urano, la sua orbita giace su un piano perpendicolare all’orbita del pianeta attorno al Sole, e come il pianeta è quindi soggetta a variazioni stagionali estreme.

Come altre lune di Urano, Miranda si formò probabilmente da un disco di accrescimento che circondava il pianeta poco dopo la sua formazione, o dopo l’evento catastrofico che ha prodotto la sua insolita inclinazione. Tuttavia, Miranda è inclinata di 4,338° rispetto al piano dell’equatore di Urano, e si tratta dell’inclinazione più marcata tra le principali lune uraniane. Miranda sarebbe potuta essere solo una piccola luna inerte ghiacciata ricoperto di crateri da impatto, invece le immagini della Voyager mostrarono un mondo dalla superficie sorprendentemente variegata e unica, un mosaico di diverse aree dalle differenti caratteristiche, con vaste pianure ondulate costellate da crateri e attraversate da una rete di faglie ripide e rupes. Questa zona ha tre coronae impressionanti, il cui diametro è superiore ai 200 km. Queste formazioni geologiche e l’inclinazione anomala dell’orbita suggeriscono una storia passata e un’attività geologica complessa. La geologia di Miranda pare sia stata caratterizzata dalle forze di marea, dalle risonanze orbitali, da una parziale differenziazione planetaria e da movimenti di convezione, dall’espansione del suo mantello e da episodi di criovulcanismo.

Missioni spaziali

Come detto, le uniche immagini ad alta risoluzione di Miranda sono state scattate dalla sonda spaziale Voyager 2, che fotografò il satellite ad una distanza minima da Miranda di circa 30.000 km, distanza notevolmente inferiore rispetto a quella tra la sonda e le altre lune uraniane. Le migliori immagini di Miranda hanno così una risoluzione 500 m, sufficiente per poter compilare una carta geologica e per poter contare i crateri. Al momento del sorvolo, l’emisfero meridionale di Miranda (come quello delle altre lune) era puntato verso il Sole, quindi l’emisfero settentrionale (immerso nelle tenebre) non poteva essere studiato. Nessun altro veicolo spaziale ha mai più visitato Urano (e Miranda). Il programma Uranus orbiter and probe, proposto dalla NASA nel 2011 prevede il lancio per gli anni 2020-2023, e potrebbe approfondire la conoscenza dei satelliti di Urano. La missione era il terzo programma a più alta priorità degli anni 2013-2022, ma è tuttavia stato messo in attesa perché a priorità più bassa rispetto a quelli per Marte ed Europa, la luna di Giove.

Un particolare della Verona Rupes, alta 20 km, la più alta scogliera del Sistema solare.

Parametri orbitali

Trovandosi ad una distanza di circa 129.900 km da Urano, Miranda è il più vicino al pianeta tra i suoi principali satelliti. L’orbita è significativamente inclinata rispetto al piano orbitale di Urano e anche la sua eccentricità è un ordine di grandezza superiore rispetto a quella delle altre lune principali di Urano. Queste caratteristiche orbitali potrebbero essere la conseguenza di risonanze orbitali avute in passato con altre lune di Urano: Miranda avrebbe potuto essere risonanza 3: 1 con Umbriel e forse in risonanza 5: 3 con Ariel. Urano è leggermente schiacciato ai poli ed è anche meno nutrito di satelliti rispetto a Giove e Saturno, pertanto, le sue lune possono più facilmente sfuggire alle forze gravitazionali che mantengono le risonanze costante nel tempo. La sua eccentricità e soprattutto la sua singolare inclinazione orbitale potrebbero essere nate quando Miranda sfuggì a queste risonanze.

Miranda è in rotazione sincrona con Urano, infatti il periodo orbitale di Miranda è di 1.413 giorni terrestri e coincide con il periodo di rotazione quindi la luna volge sempre lo stesso emisfero verso il pianeta. Tuttavia, l’orientamento degli emisferi e di conseguenza dei poli geografici non sono sempre stati quelli osservati dalla Voyager 2 durante il suo passaggio, ma è stata rivelata l’esistenza di un antico orientamento.

Composizione e struttura interna

Vi è una netta distinzione tra i diversi satelliti in base alla loro forma e alle loro dimensioni. Satelliti aventi un diametro superiore ai 400 km sono di forma sferica e l’altezza dei rilievi è quindi trascurabile rispetto alle dimensioni, e con una raggio medio di 235 km, Miranda è vicino a questo limite. È il meno denso dei principali satelliti di Urano, con una densità di (1,15 ± 0,15) g/cm³ è simile a quello del ghiaccio d’acqua. Osservazioni all’infrarosso suggeriscono che la superficie sia composta da ghiaccio d’acqua misto a composti di silicati e carbonati. Le stesse osservazioni superficiali suggeriscono anche la presenza di ammoniaca (NH3) in una percentuale del 3%. Sulla base delle misurazioni effettuate dalla Voyager 2, la percentuale di rocce rappresentano tra il 20 e il 40% della massa totale del satellite.

Miranda potrebbe essere parzialmente differenziato, con un nucleo di silicati e un mantello di ghiacci, che potrebbe avere uno spessore di 135 km, mentre il nucleo avrebbe un raggio di circa 100 km. Se questo modello è corretto, la dissipazione del calore interno di Miranda avviene per conduzione termica. Tuttavia la presenza delle coronae potrebbe essere la testimonianza di un movimento di convezione termica in superficie che avrebbe origine al suo interno e che giustificherebbe una differenziazione parziale di Miranda.

Superficie

L’aspetto della superficie di Miranda è sorprendente e unica nel suo genere: sono evidenti vari strati sovrapposti, alcuni recenti ed altri più antichi, solcati da canyon (i più profondi del sistema solare), rupes, da vaste strutture ellissoidali, chiamate coronae, che potrebbero essere la sommità di diapiri ed essere state prodotte dalla risalita di materiale più caldo dall’interno della luna. I canyon sembrerebbero dei graben, mentre altre strutture potrebbero essere conseguenza di fenomeni legati al criovulcanismo. I diapiri potrebbero aver determinato variazioni nella densità locale dell’interno della luna, causando uno spostamento dell’asse di rotazione di Miranda, in un processo simile a quello che si ritiene sia accaduto su Encelado, luna di Saturno. Miranda è uno dei pochi corpi celesti del sistema solare che presentano una circonferenza all’equatore di lunghezza inferiore rispetto alla circonferenza polare.

sopra un’altra immagine di Miranda

sotto un particolare della regione angolata  di Miranda

Si crede che queste attività possano essere state causate dalle forze di marea generate da Urano. Un’altra teoria, ora considerata meno attendibile, suggerisce che Miranda sia stata colpita da un corpo massivo che ha frammentato la luna. I frammenti successivamente si sarebbero riassemblati in posizioni differenti dando origine alla strana morfologia superficiale attuale.

View Miranda

sopra una immagine di Miranda scattata dalla Voyager 2 da una distanza di 19.000 miglia

sotto una immagine della Voyager 2 scattata da 22.000 miglia

Uranus' innermost satellite Miranda

L’orbita di Miranda è inclinata di 4,34°; tale inclinazione è molto inusuale per una luna così vicina al suo pianeta. È possibile che sia stata ad un certo punto in risonanza orbitale 3:1 con Umbriel. L’attrito di marea risultante può aver causato il riscaldamento interno della luna e così essere origine della passata attività geologica.

Morfologia

Le regiones

Le regiones identificate nelle immagini scattate dalla Voyager 2 sono chiamate “Regio Mantova”, “Efeso Regio”, “Sicilia Regio” e “Regio Dunsinane”. Esse indicano aree caratterizzate da terreni ondulati e pianure più o meno fortemente segnati da antichi crateri d’impatto. In questi antichi terreni sono presenti anche delle faglie normali e delle scarpate, alcune vecchie come la formazione delle regiones, mentre altre sono molto più recenti e sembrano essersi formate dopo le coronae. Queste faglie sono accompagnate da graben causati da un’antica attività tettonica. La superficie di queste regioni è abbastanza uniforme e scura, tuttavia le falesie che si affacciano su alcuni crateri da impatto rivelano in profondità la presenza di materiale molto più luminoso.

sopra morfologia di Miranda

sotto un particolare che evidenzia tre differenti tipi di terreno su Miranda

Miranda's Geologic History

Urano visto da Miranda

Dall’emisfero che Miranda rivolge ad Urano il pianeta rimane fisso nel cielo, raggiungendo una dimensione di 22º (40 volte la Luna piena vista dalla Terra)  Dall’altra parte è possibile vedere periodicamente gli altri satelliti attraversare la volta celeste.